Beginning EJB™ 3
Application Development
From Novice to Professional

Raghu R. Kodali and Jonathan Wetherbee
with Peter Zadrozny

Apress’

Beginning EJB™ 3 Application Development: From Novice to Professional
Copyright © 2006 by Raghu R. Kodali and Jonathan Wetherbee with Peter Zadrozny

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-671-5
ISBN-10 (pbk): 1-59059-671-4
Printed and bound in the United States of America98765432 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc. is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin

Technical Reviewer: Tom Marrs

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Senior Project Manager: Sofia Marchant

Copy Edit Manager: Nicole LeClerc

Copy Editor: Damon Larson

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositors: Dina Quan, Gina Rexrode

Proofreader: Linda Marousek

Indexer: Julie Grady

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section. You will need to answer questions pertaining to this book in order to successfully
download the code.

CHAPTER 2

EJB 3 Session Beans

Introduction

This chapter will discuss EJB 3 session beans, the core business service objects used by
EJB client applications. You'll gain an understanding of the new and simplified EJB 3
session bean model, with insight into the following topics:

¢ Types of session beans, both stateful and stateless, and when to use which
¢ The bean class, business interfaces, and business methods

¢ Callback methods

¢ Interceptors

¢ Exception handling

e Client view

* Dependency injection with annotations related to session beans

Introduction to Session Beans

Session beans are Java components that run in either stand-alone EJB containers or EJB
containers that are part of standard Java Platform, Enterprise Edition (Java EE) applica-
tion servers. These Java components are typically used to model a particular user task or
use case, such as entering customer information or implementing a process that main-
tains a conversation state with a client application. Session beans can hold the business
logic for many types of applications, such as human resources, order entry, and expense
reporting applications.

27

28 CHAPTER 2 = EJB 3 SESSION BEANS

Types of Session Beans

Session beans are of two types, as follows:

e Stateless: This type of bean does not maintain any conversational state on behalf of
a client application.

e Stateful: This type of bean maintains state, and a particular instance of the bean is
associated with a specific client request. Stateful beans can be seen as extensions
to client programs that are running on the server.

We will drill down into more specifics of stateless and stateful beans in the following
sections.

When Do You Use Session Beans?

Session beans are used to write business logic, maintain a conversation state for the
client, and model back-end processes or user tasks that perform one or more business
operations. Typical examples include the following:

¢ A session bean in a human resources application that creates a new employee and
assigns the employee to a particular department

¢ A session bean in an expense reporting application that creates a new expense
report

¢ A session bean in an order entry application that creates a new order for a
particular customer

* Asession bean that manages the contents of a shopping cart in an e-commerce
application

* Asession bean that leverages transaction services in an EJB 3 container (removing
the need for an application developer to write the transaction support)

* A session bean used to address deployment requirements when the client applica-
tions are not colocated on the same server

¢ A session bean that leverages the security support provided by the container on the
component or method level

Session beans can be used in traditional 2-tier or 3-tier architectures with professional/
rich client applications, or in 3-tier web-based applications. These applications can be
deployed in different logical and physical tier combinations. In the next section, we will
investigate some of the possible combinations.

CHAPTER 2 © EJB 3 SESSION BEANS

3-Tier Architecture with Rich Client

Figure 2-1 shows a typical architecture for a session bean in 3 tiers, with a rich client
front-end application that has some data entry screens used by end users like customer
service representatives, bank tellers, and so on. These client applications can be devel-
oped using Java Swing technology with the Java Platform, Standard Edition (Java SE), or
they can be plain old Java objects (POJOs) that are run from the command line. Gener-
ally, the end user launches the client application from his desktop, enters some data, and
triggers an event by pressing some user interface component such as a Submit button.
The general workflow may look something like this:

1. User action establishes a connection to the session bean running in the EJB con-
tainer using remote method invocation (RMI).

2. The client application invokes one or more business methods in the session bean.

3. The session bean processes the request and validates data—by interacting with
databases, enterprise applications, legacy systems, and so on—to perform a
certain business operation or task.

4. The session bean finally sends a response back to the client application, either
through data collections or simple objects that contain acknowledgment

messages.
EJB Container
D
Professional atabase
Client Application
Session
Bean(s)
Network Network

Figure 2-1. Session beans in a 3-tier architecture

29

30

CHAPTER 2 = EJB 3 SESSION BEANS

3-Tier Architecture for a Web Application

This architecture, as shown in Figure 2-2, is typically front-ended by a web application
running in the browser of a desktop or laptop machine. These days, other types of client
devices, such as PDAs, cell phones, and telnet devices, are also being used to run these
applications. The web application running in a browser or mobile device renders the
user interface (data entry screens, Submit buttons, etc.) using web technologies such as
JavaServer Pages (JSP), JavaServer Faces (JSF), or Java Servlets. Typical user actions, such
as entering search criteria or adding certain items to the web application shopping cart,
will invoke/call session beans running in an EJB container via one of the aforementioned
web technologies. Once the session bean gets invoked, it processes the request and sends
aresponse back to the web application, which formats the response as required, and
then sends the response on to the requesting client device (browser, PDA, telnet, etc.).

Web Application Web Container EJB Container Database

% JsP
/4%; JSF — Session
Remote Bean(s) —%»

Servlets

Network Network

Figure 2-2. Session beans in a 3-tier architecture with a web application

In the 3-tier architecture just discussed, the client application (which is the web
application) and the session beans can be run within the same instance of an application
server (colocated) or from different instances running on the same machine. They can
also be run in physically separate machines that have an instance of an application
server.

CHAPTER 2 © EJB 3 SESSION BEANS

Stateless Session Beans

Stateless session beans are comprised of the following elements:

¢ Business interfaces, which contain the declaration of business methods that are
going to be visible to client applications

¢ Abean class, which contains the business method implementation to be executed

The Bean Class

A stateless session bean class is any standard Java class that has a class-level annotation
of @Stateless. If deployment descriptors are used instead of annotations, then the bean
class should be denoted as a stateless session bean. If you use both annotations and
deployment descriptors (mixed mode), then the @Stateless annotation must be specified
if any other class-level or member-level annotations are specified in the bean class. If
both annotations and deployment descriptors are used, then the settings or values in the
deployment descriptor will override the annotations in the classes during the deploy-
ment process.

To illustrate the use of stateless session beans, we will create a SearchFacade session
bean that provides various search facilities to client applications regarding available
wines. The workflow is as follows:

1. Users of the application will type in or choose one or more search criteria, which
will be submitted to the SearchFacade session bean.

2. The SearchFacade bean will access back-end databases to retrieve the requested
information. To simplify the code examples in this chapter, we will actually
retrieve the list of hard-coded values within the bean class. In later chapters,
we will augment the SearchFacade bean to access the back-end database.

3. The bean returns to the client applications the information that satisfied the
search criteria.

Listing 2-1 shows the definition of the SearchFacade bean. In the following sections
of this chapter, we will build the code that will show the preceding workflow in action.
SearchFacadeBean is a standard Java class with a class-level annotation of @Stateless.

31

32

CHAPTER 2 = EJB 3 SESSION BEANS

Listing 2-1. SearchFacadeBean.java

package com.apress.ejb3.chapteroz;
import javax.ejb.Stateless;

@Stateless(name="SearchFacade")

public class SearchFacadeBean implements SearchFacade, SearchFacadelocal {
public SearchFacadeBean() {
}

The Business Interface

A stateless session business interface is a standard Java interface that does not extend any
EJB-specific interfaces. This interface has a list of business method definitions that will
be available for the client application. Every session bean must have a business interface
that can be implemented by the bean class, generated at design time by tools such as
Oracle JDeveloper, NetBeans, or Eclipse; or generated at deployment time by the EJB
container.

Business interfaces can use annotations as well, as described in the following list:

¢ The @Remote annotation can be used to denote the remote business interface.
¢ The @Local annotation can be used to denote the local business interface.

If no annotation is specified in the interface, then it is defaulted to the local interface.

If your architecture has a requirement whereby the client application (web applica-
tion or rich client) has to run on a different Java Virtual Machine (JVM) from the one that
is used to run the session beans in an EJB container, then you need to use the remote
interface. The separate JVMs can be on the same physical machine or on separate
machines. If your application architecture is going to use the same JVM for both the
client application and the session beans, then use the local interface.

It is possible that your application architecture requires both remote and local inter-
faces. For example, an enterprise might have an order entry application that is developed
using session beans that have business methods for submitting new orders and also
addressing administrative tasks, such as data entry for the products. Potentially, you
could have two different client applications that access the back-end order entry applica-
tion, as follows:

CHAPTER 2 ' EJB 3 SESSION BEANS

e A web client application (as shown in Figure 2-3) that can be run in the same JVM
as the session bean and used to submit new orders

¢ Arich client application (as shown in Figure 2-4) that runs on an end-user desktop
machine and is used by the administrator for data entry purposes

Web Container EJB Container

Local Calls Session
Bean(s)

JUM

Application Server

Figure 2-3. A web client using local interfaces of session beans

EJB Container

Professional
Client Application

Session

Bean(s)

Remote Calls

JUM

JUM

Application Server

Figure 2-4. A rich client using remote interfaces of session beans

33

34 CHAPTER 2 = EJB 3 SESSION BEANS

The SearchFacade session bean has both remote and local interfaces, as shown in

Figure 2-5.
<Business Interface> <Business Interface>
SearchFacade SearchFacadeLocal
v Y

<Session Bean>
SearchFacadeBean

Figure 2-5. The business interfaces of the SearchFacade session bean

Listing 2-2 shows the code snippet for the SearchFacade remote business interface,
with an @Remote annotation and a wineSearch() method declaration. The wineSearch()
method takes one parameter that represents the type of the wine, and returns a list of
wines that match the wine type criteria.

Listing 2-2. SearchFacade.java
package com.apress.ejb3.chapter02;
import java.util.list;

import javax.ejb.Remote;

@Remote

public interface SearchFacade {
List wineSearch(String wineType);

Listing 2-3 shows the code snippet for the SearchFacade local business interface, with
an @Local annotation and a wineSearch() method declaration.

Listing 2-3. SearchFacadeLocal.java

package com.apress.ejb3.chapteroz;

import java.util.list;

CHAPTER 2 © EJB 3 SESSION BEANS

import javax.ejb.local;

@Local
public interface SearchFacadelocal {
List wineSearch(String wineType);

Business Methods

The methods implemented in the bean class must correspond to the business methods
declared in the remote or local business interfaces. They are matched up based on the
convention that they have the same name and method signature. Other methods in the
bean class that do not have the corresponding declaration in the business interfaces will
be private to the bean class methods.

The SearchFacade bean implements one method, wineSearch(), which has been
declared in both remote and local business interfaces. The wineSearch() method returns
a static wines list based on the type of wine. Listing 2-4 shows the implementation for
wineSearch().

Listing 2-4. SearchFacadeBean.java

package com.apress.ejb3.chapteroz;

import java.util.Arraylist;
import java.util.list;

import javax.ejb.Stateless;

@Stateless(name="SearchFacade")

public class SearchFacadeBean implements SearchFacade, SearchFacadelocal {
public SearchFacadeBean() {
}

public List wineSearch(String wineType) {
List winelist = new Arraylist();
if (wineType.equals("Red"))
{
winelList.add("Bordeaux");
winelist.add("Merlot");
winelist.add("Pinot Noir");

}

35

36

CHAPTER 2 = EJB 3 SESSION BEANS

else if (wineType.equals("White"))
{

winelList.add("Chardonnay");

return winelist;

Dependency Injection

In Chapter 1, we introduced the concept of dependency injection as a programming
design pattern. In this section, we will look into using dependency injection in stateless
session beans.

EJB 3 containers provide the facilities to inject various types of resources into state-
less session beans. Typically, in order to perform user tasks or process requests from
client applications, the business methods in the session bean require one or more types
of resources. These resources can be other session beans, data sources, or message
queues.

The resources that the stateless session bean is trying to use can be injected using
annotations or deployment descriptors. Resources can be acquired by annotation of
instance variables or annotation of the setter methods. Listing 2-5 shows an example of
setter and instance variable-based injection of myDb, which represents the data source.

Listing 2-5. Data Source Injection

@Resource
DataSource myDb;

or

@Resource

public void setMyDb(DataSource myDb) {
this.myDb = myDb;

}

You typically use the setter injections to preconfigure or initialize properties of the
injected resource.

CHAPTER 2 © EJB 3 SESSION BEANS

Callback Methods

There will be certain instances or use cases in which the application using session beans
requires fine-grained control over things like an object’s creation, removal, and so on. For
example, the SearchFacade session bean might need to perform some database initializa-
tion when it is created, or close some database connections when it is destroyed. The
application can gain fine-grained control over the various stages of the bean life cycle
via methods known as callback methods. A callback method can be any method in the
session bean that has callback annotations. The EJB container calls these methods at
the appropriate stages of the bean’s life cycle (bean creation and destruction).

Following are two such callbacks for stateless session beans:

¢ PostConstruct: Denoted with the @PostContruct annotation. Any method in the
bean class can be marked with this annotation.

¢ PreDestroy: Denoted with the @PreDestroy annotation. Again, any method in the
bean class can be marked with this annotation.

PostContruct callbacks happen after a bean instance is instantiated in the EJB
container. If the bean is using any dependency injection mechanisms for acquiring refer-
ences to resources or other objects in its environment, PostConstruct will occur after
injection is performed and before the first business method in the bean class is called.

In the case of the SearchFacade session bean, you could have a business method,
wineSearchByCountry(), that would return the wine list for a particular country, and have
a PostConstruct callback method, initializeCountryWinelist(), that would initialize the
country’s wine list whenever the bean gets instantiated. Ideally, you would load the list
from a back-end datastore; but in this chapter, we will just use some hard-coded values
that get populated into a HashMap, as shown in Listing 2-6.

Listing 2-6. The PostConstruct Method

@PostConstruct
public void initializeCountryWinelist()

{

//countryMap is HashMap
countryMap.put("Australia", "Sauvignon Blanc");
countryMap.put("Australia", "Grenache");

non

countryMap.put("France","Gewurztraminer");

countryMap.put("France", "Bordeaux");

}

37

38

CHAPTER 2 = EJB 3 SESSION BEANS

The PreDestroy callback happens before the container destroys an unused or expired
bean instance from its object pool. This callback can be used to close any connection
pool that has been created with dependency injection, and also to release any other
resources.

In the case of the SearchFacade session bean, we could add a PostConstruct callback
method (destroyWinelist()) into the SearchFacade bean, which would clear the country
wine list whenever the bean gets destroyed. Ideally, during PostContruct, we would close
any resources that have been created with dependency injection; but in this chapter,
we will just clear the HashMap that has the countries and wine list. Listing 2-7 shows the
destroyWinelist() code.

Listing 2-7. The PreDestroy Method

@PreDestroy
public void destroyWinelList()
{

countryMap.clear();

}

Callback methods defined on a bean class should have the following signature:
public void <METHOD> ()

Callback methods can also be defined on a bean’s listener class; these methods
should have the following signature:

public void <METHOD>(Object)

where Object may be declared as the actual bean type, which is the argument passed to
the callback method at run time.

Interceptors

The EJB 3 specification provides annotations called interceptors, which allow you to
intercept a business method invocation. An interceptor method can be defined for ses-
sion and message-driven beans (MDBs). We will show you the usage of interceptors in
the session bean context.

There are number of use cases for interceptors in a typical application, in which
you would find a need to perform a certain task before or after the business method is
invoked. For example, you may wish to do one of the following:

CHAPTER 2 © EJB 3 SESSION BEANS
Perform additional security checks before a critical business method that transfers
more than $100,000 dollars
Do some performance analysis to compute the time it takes to perform the task

Do additional logging before or after the method invocation

You can either add an @AroundInvoke annotation on a particular method, or you can
define an interceptor class whose methods are invoked before a business method is
invoked in the bean class. An interceptor class is denoted by the @Interceptor annotation
on the bean class with which it is associated. In the case of multiple interceptor classes,
the @Interceptors annotation is used. Methods that are annotated with @AroundInvoke
should have the following signature:

public Object <METHOD>(InvocationContext) throws Exception

The definition of InvocationContext is as follows:

package javax.ejb;

public interface InvocationContext {

public Object getBean();

public java.lang.reflect.Method getMethod();
public Object[] getParameters();

public void setParameters(Object[] params);
public EJBContext getEJBContext();

public java.util.Map getContextData();
public Object proceed() throws Exception;

The following list describes the methods in the preceding code:

getBean() returns the instance of the bean on which the method was called.
getMethod() returns the method on the bean instance that was called.
getParameters() returns the parameters for the method call.

setParameters() modifies the parameters used for the method call.
getEJBContext () gives the interceptor methods access to the bean’s EJBContext.

getContextData() allows values to be passed between interceptor methods in the
same InvocationContext instance using the Map returned.

proceed() invokes the next interceptor, if there is one, or invokes the target bean
method.

39

40

CHAPTER 2 = EJB 3 SESSION BEANS

In the SearchFacade session bean, we can add an interceptor that logs the time taken
to execute each business method when invoked by the client applications. Listing 2-8
shows a time log method that will print out the time taken to execute a business method.
InvocationContext is used to get the name of bean class and the invoked method name.
Before invoking the business method, current system time is captured and deducted
from the system time after the business method is executed. Finally, the details are
printed out to the console log using System.out.println.

Listing 2-8. The Interceptor Method

@AroundInvoke
public Object TimerlLog (InvocationContext ctx) throws Exception
{
String beanClassName = ctx.getClass().getName();
String businessMethodName = ctx.getMethod().getName();
String target = beanClassName + "."
long startTime = System.currentTimeMillis();
System.out.println ("Invoking
try {
return ctx.proceed();
}
finally {
System.out.println("Exiting " + target);

+ businessMethodName ;

+ target);

long totalTime = System.currentTimeMillis() - startTime;
System.out.println("Business method " + businessMethodName +

in " + beanClassName + "takes

}

+ totalTime + "ms to execute");

Stateful Session Beans

Similar to stateless session beans, stateful beans comprise a bean class and a business
interface.

The Bean Class

A stateful session bean class is any standard Java class that has a class-level annotation
of @Stateful. If deployment descriptors are used instead of annotations, the bean class
should be denoted as a stateful session bean. In the case of mixed mode, in which you are

CHAPTER 2 © EJB 3 SESSION BEANS

using annotations and deployment descriptors, the @Stateful annotation must be speci-
fied if any other class-level or member-level annotations are specified in the class.

To illustrate a stateful session bean, we will create a ShoppingCart session bean that
will keep track of the items added to a user’s shopping cart and their respective quanti-
ties. In this chapter, we will use hard-coded values for the shopping cart to illustrate
the state and conversation maintenance between the client and stateful session bean.
Listing 2-9 shows the definition of a ShoppingCart session bean.

Listing 2-9. ShoppingCartBean.java

package com.apress.ejb3.chapter02;
import javax.ejb.Stateful;

@Stateful (name="ShoppingCart")

public class ShoppingCartBean implements ShoppingCart, ShoppingCartlocal {
public ShoppingCartBean() {
}

There will be certain use cases in which the application wants to be notified by the
EJB container before or after transactions take place, and then use these notifications to
manage data and cache. A stateful session bean can receive this kind of notification by
the EJB container when it implements the javax.ejb.SessionSynchronization interface.
This is an optional feature. There are three different types of transaction notifications
that the stateful session bean receives from the EJB container, as follows:

e afterBegin: Indicates that a new transaction has begun
¢ beforeCompletion: Indicates that the transaction is going to be committed
¢ afterCompletion: Indicates that a transaction has been completed

For example, the ShoppingCart session bean could implement the javax.ejb.
SessionSynchronization interface to get an afterCompletion notification, so that it
can clear out the shopping cart cache.

The Business Interface

Business interfaces for stateful session beans are similar to those for stateless session
beans, and are annotated in the same way, using @Local and @Remote annotations. The
ShoppingCart session bean has both remote and local interfaces, as shown in Figure 2-6.

4

42

CHAPTER 2 = EJB 3 SESSION BEANS

<Business Interface> <Business Interface>
ShoppingCart ShoppingCartLocal
< > 4

<Session Bean>
ShoppingCartBean

Figure 2-6. Business interfaces for ShoppingCart

We will primarily use the local interface from our web application. The remote inter-
face is added to facilitate unit testing of the bean in this chapter.

Listings 2-10 and 2-11 show the remote and local ShoppingCart business interfaces,
with @Remote and @Local annotations, respectively.

Listing 2-10. ShoppingCart.java

package com.apress.ejb3.chapteroz;
import javax.ejb.Remote;

@Remote
public interface ShoppingCart {
}

Listing 2-11. ShoppingCartLocal.java

package com.apress.ejb3.chapteroz;
import javax.ejb.local;

@Local
public interface ShoppingCartlocal {

}

Alternatively, you can use the coding style shown in Listing 2-12, in which you can
specify the @Local and @Remote annotations before specifying @Stateful or @Stateless with
the name of the business interface.

CHAPTER 2 © EJB 3 SESSION BEANS

Listing 2-12. ShoppingCartBean.java

package com.apress.ejb3.chapteroz;

import javax.ejb.local;
import javax.ejb.Remote;
import javax.ejb.Stateful;

@Local({ShoppingCartLocal.class})
@Remote ({ShoppingCart.class})
@Stateful (name="ShoppingCart")

public class ShoppingCartBean implements ShoppingCart, ShoppingCartlLocal {
public ShoppingCartBean() {
}

Note In this book, we will follow the earlier convention, in which @Local and @Remote annotations are
marked on the business interfaces.

Business Methods

Business methods in stateful session beans are similar to those in stateless session beans.
We will augment the ShoppingCart bean by adding business methods that will add and
remove wines from the shopping cart, and return a list of cart items.

Listing 2-13 shows the ShoppingCart bean implementing the addWineItem(),
removelineItem(), and getCartItems() methods.

Listing 2-13. ShoppingCartBean.java

package com.apress.ejb3.chapteroz;
import java.util.Arraylist;

import javax.ejb.Stateful;

@Stateful (name="ShoppingCart")

43

44

CHAPTER 2 = EJB 3 SESSION BEANS

public class ShoppingCartBean implements ShoppingCart, ShoppingCartlocal {
public ShoppingCartBean() {

}

public ArraylList cartItems;

public void addwineItem(String wine) {
cartItems.add(wine);

public void removeWineItem(String wine) {
cartItems.remove(wine);

public void setCartItems(Arraylist cartItems) {
this.cartItems = cartItems;

public Arraylist getCartItems() {
return cartItems;

Callback Methods

Stateful session beans support callback events for construction, destruction, activation,
and passivation. Following are the callbacks that map to the preceding events:

* PostConstruct: Denoted with the @PostConstruct annotation. Any method in the
bean class can be marked with this annotation.

* PreDestroy: Denoted with the @PreDestroy annotation.
e PreActivate: Denoted with the @PreActivate annotation.
e PrePassivate: Denoted with the @PrePassivate annotation.

The PostContruct callback happens after a bean instance is instantiated in the EJB
container. If the bean is using any dependency injection mechanism for acquiring refer-
ences to resources or other objects in its environment, the PostConstruct event happens
after injection is performed and before the first business method in the bean class is
called.

CHAPTER 2 © EJB 3 SESSION BEANS

In the case of the ShoppingCart session bean, we could have a business method called
initialize() thatinitializes the cartItems list, as show in Listing 2-14.

Listing 2-14. The PostConstruct Method

@PostConstruct

public void initialize()
{
cartItems = new Arraylist();
}

The PreDestroy callback happens after any method with an @Remove annotation has
been completed. In the case of the ShoppingCart session bean, we could have a business
method called exit() that writes the cartItems list into a database. In this chapter, we
will just print out a message to the system console to illustrate the callback. Listing 2-15
shows the code for the exit() method, which has the @PreDestroy annotation.

Listing 2-15. The PreDestroy Method

@PreDestroy
public void exit()
{
// items list into the database.
System.out.println("Saved items list into database");
}

The @Remove annotation is a useful life cycle method for stateful session beans. When
the method with the @Remove annotation is called, the container will remove the bean
instance from the object pool after the method is executed. Listing 2-16 shows the code
for the stopSession() method, which has the @Remove annotation.

Listing 2-16. The Remove Method

@Remove
public void stopSession()
{
// The method body can be empty.
System.out.printIn("From stopSession method with @Remove annotation");

}

45

46

CHAPTER 2 = EJB 3 SESSION BEANS

The PrePassivate callback kicks in when a stateful session bean instance is idle for
too long. During this event, the container might passivate and store its state to a cache.
The method tagged with @PrePassivate is called before the container passivates the bean
instance.

The PostActivate event gets raised when the client application uses a passivated
stateful session bean again. A new instance with restored state is created. The method
with the @PostActivate annotation is called when the bean instance is ready.

Interceptors

There are some minor differences between interceptors for stateless and stateful session
beans. AroundInvoke methods can be used with stateful session beans. For stateful session
beans that implement SessionSynchronization, afterBegin occurs before any methods
that have AroundInvoke annotations, and before the beforeCompletion() callback method.

Exception Handling

The EJB 3 specification outlines two types of exceptions:
e Application exceptions
¢ System exceptions

Application exceptions are exceptions related to execution of business logic that the
client should handle. For example, an application exception might be raised if the client
application passes an invalid argument, such as the wrong credit card number.

System exceptions, on the other hand, are caused by system-level faults, such as Java
Naming and Directory Interface (JNDI) errors, or failure to acquire a database connec-
tion. A system exception must be a subclass of a java.rmi.RemoteException, or a subclass
of a java.lang.RuntimeException that is not an application exception.

From the EJB application point of view, application exceptions are done by writing
application-specific exception classes that subclass the java.lang.Exception class.

In the case of a system exception, the application catches particular exceptions—
such as a NamingException that results from a JNDI failure—and throws an EJBException.
In this particular chapter, our examples aren’t using any resources as such—but there are
more examples of system exceptions in the later chapters.

Client View for Session Beans

A session bean can be seen as a logical extension of a client program or application,
where much of the logic and data processing for that application happens. A client

CHAPTER 2 © EJB 3 SESSION BEANS

application typically accesses the session object through the session bean’s client view
interfaces, which are the business interfaces that were discussed in the earlier sections.
A client application that accesses session beans can be one of three types:

Remote: Remote clients run in a separate JVM from the session beans that they
access, as shown in Figure 2-4. A remote client accesses a session bean through the
bean’s remote business interface. A remote client can be another EJB, a Java client
program, or a Java servlet. Remote clients have location independence, meaning that
they can use the same API as the clients running in the same JVM.

Local: Local clients run in the same JVM, as shown in Figure 2-3, and access the ses-
sion bean through the local business interface. A local client can be another EJB, or a
web application using Java Servlets, JavaServer Pages (JSP), or JavaServer Faces (JSF).
Local clients are location dependent. Remote and local clients are compared in
Table 2-1.

Web Services: You can publish stateless session beans as web services that can be
invoked by Web Services clients. We will discuss Web Services and clients in
Chapter 6.

Table 2-1. Considerations for Choosing Between Local and Remote Clients

Remote Local

Loose coupling between the bean and the client Lightweight access to a component
Location independence Location dependence

Expensive remote calls Must be colocated with the bean
Objects must be serialized Not required

Objects are passed by value Objects are passed by reference

In some cases, the session beans need to have both local and remote business inter-
faces to support different types of client applications. A client can obtain a session bean’s
business interface via dependency injection or JNDI lookup. Before invoking the methods
in the session bean, the client needs to obtain a stub object of the bean via JNDI. Once
the client has a handle to the stub object, it can call the business methods in the session
bean. In the case of a stateless session bean, a new stub can be obtained on every invoca-
tion. In the case of a stateful session bean, the stub needs to be cached on the client side
so that the container knows which instance of the bean to return on subsequent calls.
Using dependency injection, we can obtain the business interface of the SearchFacade
session bean with the following code:

@EJB SearchFacade searchFacade;

47

48

CHAPTER 2 = EJB 3 SESSION BEANS

If the client accessing the session bean is remote, the client can use JNDI lookup
once the context interface has been obtained with the right environment properties.
Local clients can use JNDI lookup as well, but dependency injection results in simpler
code. Listing 2-17 shows the SearchFacadeTest client program’s JNDI code, which looks
up the SearchFacade bean, invokes the wineSearch() business method, and prints out the
returned list of wines.

Note If the remote client is a Java application or command-line program, an application client container
can be used to invoke the session beans. Application client containers support dependency injection for
remote clients. We will discuss application client containers in Chapter 12, along with other types of client
applications.

Listing 2-17. SearchFacadeClient.java

package com.apress.ejb3.chaptero2.client;

import com.apress.ejb3.chapter02.SearchFacade;
import java.util.list;

import javax.naming.InitialContext;

import javax.naming.NamingException;

public class SearchFacadeTest {
public SearchFacadeTest() {

}

public static void main(String[] args) {
SearchFacadeTest searchFacadeTest = new SearchFacadeTest();
searchFacadeTest.doTest();

@EJB
static SearchFacade searchFacade;

void doTest(){
InitialContext ic;

try {
ic = new InitialContext();
System.out.println("SearchFacade Lookup");

CHAPTER 2 © EJB 3 SESSION BEANS

System.out.println("Searching wines");
List wineslList = searchFacade.wineSearch("Red");
System.out.println("Printing wines list");
for (String wine:(List<String>)winesList){
System.out.println(wine);
}
} catch (NamingException e) {
e.printStackTrace();

Listing 2-18 shows the ShoppingCartTest client program, which looks up the stateful
ShoppingCart session bean, calls the addWineItem() business method to add a wine to the
shopping cart, calls the getCartItems() business method to get the items in the cart, and
finally prints the list of wines in the shopping cart.

Listing 2-18. ShoppingCartTest.java

package com.apress.ejb3.chaptero2.client;
import com.apress.ejb3.chaptero2.ShoppingCart;
import java.util.Arraylist;

import java.util.list;

import javax.naming.InitialContext;
import javax.naming.NamingException;

public class ShoppingCartTest {
public ShoppingCartTest() {
}

public static void main(String[] args) {
ShoppingCartTest shoppingCartTest = new ShoppingCartTest();
shoppingCartTest.doTest();

@®EJB
static ShoppingCart shoppingCart;

49

50 CHAPTER 2 = EJB 3 SESSION BEANS

void doTest(){
InitialContext ic;

try {
ic = new InitialContext();
System.out.println("ShoppingCart Lookup");
System.out.println("Adding Wine Item");
shoppingCart.addWineItem("Zinfandel");
System.out.printIn("Printing Cart Items");
Arraylist cartItems = shoppingCart.getCartItems();
for (String wine:(List<String>)cartItems){

System.out.println(wine);

}

} catch (NamingException e) {
e.printStackTrace();

Packaging, Deploying, and Testing the
Session Beans

Session beans need to be packaged into EJB JAR (. jar) files before they are deployed into
EJB containers. In the case of some EJB containers or application servers, packaged EJB
archives need to be assembled into Enterprise Archive (EAR) files before deployment. EJB
containers or application servers provide deployment utilities or Ant tasks to facilitate
deployment of EJBs. Java IDEs (integrated development environments) like Oracle
JDeveloper, NetBeans, and Eclipse also provide deployment features that allow develop-
ers to package, assemble, and deploy EJBs to application servers. Packaging, assembly,
and deployment are covered in detail in Chapter 10.

So far in this chapter, we have developed one stateless session bean (SearchFacade)
and one stateful session bean (ShoppingCart). The following sections will walk you
through the steps to package, assemble, deploy, and test these session beans.

Prerequisites

Before performing any of the steps detailed in the next sections, complete the “Getting
Started” section of Chapter 1, which will walk you through the installation and environ-
ment setup required for the samples in this chapter.

CHAPTER 2 © EJB 3 SESSION BEANS

Note We assume that the source code for this chapter’s samples is located in the Z: drive. Replace Z:
with the location of the directory into which you have downloaded the source.

Compiling the Session Beans

From the DOS console, execute the following javac command to compile the SearchFacade
and ShoppingCart session beans, along with their business interfaces. Figure 2-7 shows
the command being executed from the z:\Chapter02-SessionSamples\SessionBeanSamples
directory.

Z:\Chapter02-SessionSamples\SessionBeanSamples>%JAVA HOME%/bin/javac -classpath =
%GLASSFISH HOME%Z\1ib\javaee.jar -d ./classes src\com\apress\ejb3\chapter02*.java

WINDOWS" System32cmd.exe

Z:xChapterB2—-SessionSamplessSessionBeanSamples > JAVA_HOME® sbin/javac —classpath E
#GLASSFISH_HOMEx~1ib%javaee.jar —d .- classes srchcomsapresshejb3schapterB2s=. jav
a

Figure 2-7. Compiling the session beans

In the downloaded source code for this chapter’s samples, you will see the Ant build
script (build.xml). You can alternatively use the following Ant task to compile the session
beans:

Z:\Chapter02-SessionSamples\SessionBeanSamples>%ANT HOME%/bin/ant w»
Compile-SessionSamples

Note If you are using the Ant task for compiling, make appropriate changes to the build. properties
file to reflect the settings for the GlassFish application server that you have installed.

51

CHAPTER 2 © EJB 3 SESSION BEANS

Packaging the Session Beans

Once the source code for the session beans is compiled, you need to package the com-
piled classes into an EJB JAR file. Execute the following command from the DOS console:

Z:\Chapter02-SessionSamples\SessionBeanSamples\classes>%JAVA HOME%/bin/jar cvf w»
. \archive\SessionSamples.jar .\com

Note The preceding command is run from the classes directory.

Figure 2-8 shows the command being executed from the Z:\Chapter02-SessionSamples\
SessionBeanSamples\classes directory, and the files being added to the generated JAR file.

WINDOWS" System32\cmd.exe

szionSamplessSessionBeanSamplessclasses >%JAVA_HOME: ~bin/jar cuf .mm|
onSamples.jar .“com
added manifest
: coms<in = B> <{out= BX{stored B:>

comsapresssCin = B> (out= @){(stored Bz

comsap ejb3s{(in = B) <(out= B){stored Bx>

comsapmr ejb3 chapterB2-(in = B) Cout= B>{(stored Bz

comsapresssejbhdschapterB2 SearchFacade.class<in = 211> {out= 175>{deflat

g: comsapresssejbd/chapterB2 SearchFacadeBean.class<{in = 2528> <{out= 1296>¢
48>

: comsapresssejbdschapterB2 SearchFacadelocal.class{in = 215> {out= 176>{d
182>

: comsapresssejbdschapterB2 ShoppingCart.class{in = 222> {out= 188>{def lat

: comsapresssejbdschapterB2 ShoppingCartBean.class{in = 1145> {out= 594>{d
48>

: comsapresssejbdschapterB2 ShoppingCartLocal.class{in = 226> {out= 188>{d
162>

Z:xChapterB2-SeszionSampleszsSesszionBeanSamplessclasses>

Figure 2-8. Packaging the session beans

Alternatively, you can use the following Ant task to package the session beans:

Z:\Chapter02-SessionSamples\SessionBeanSamples>%ANT HOME%/bin/ant =
Package-SessionBeans

The generated SessionSamples. jar file will be stored in the archive directory.

Note If you are using the Ant task for packaging, make the appropriate changes to the build.properties
file to reflect the settings for the GlassFish application server you have installed.

CHAPTER 2 © EJB 3 SESSION BEANS

Deploying the Session Beans

Once you have compiled and packaged the session beans, you can deploy the generated
JAR file (SessionSamples.jar) to the GlassFish application server. You can deploy the JAR
file from the GlassFish administration console—however, for practical purposes, you'll
want to automate these tasks as much as possible. You should use the following com-
mand-line utilities and Ant task for deployment.

From the DOS console, execute the following command:

Z:\Chapter02-SessionSamples\SessionBeanSamples>%GLASSFISH HOME%/bin/asadmin.bat w»
deploy --host localhost --port 4848 --user admin --passwordfile %GLASSFISH HOME%\ ‘=
asadminpass --upload=true --target server =
Z:\Chapter02-SessionSamples\SessionBeanSamples\archive\SessionSamples.jar

Figure 2-9 shows the command being executed from the z:\Chapter02-SessionSamples\
SessionBeanSamples directory.

WINDOWS" System32\cmd.exe

Z:xChapterB2-SessionSamplessSessionBeanSamples > GLASSFISH_HOMExbin-asadmin.bat E
deploy —host localhost —port 4848 ——user admin ——passwordfile *GLASSFISH_HOME:x

shinspassfile —upload=true ——target server z:“ChapterB2-SessionSamples“SessionB
eanSamplessarchivesSessionSamples. jar
Command deploy executed successfully.

Z:xChapterB2-SessionSamplessSessionBeanSamples >

Figure 2-9. Deploying the session beans

Alternatively, you can use the following Ant task to deploy the session beans:

Z:\Chapter02-SessionSamples\SessionBeanSamples>%ANT HOME%/bin/ant w»
Deploy-SessionBeans

Note If you are running the GlassFish application server on a different machine, replace localhost with
that machine name in the command-line arguments. Similarly, if you are running on a different port, replace
4848 with the number of the port that you are using. If you are using the Ant task for deployment, make the
appropriate changes to the build.properties file to reflect the settings for the GlassFish application
server you have installed.

53

54

CHAPTER 2 © EJB 3 SESSION BEANS

Compiling the Client Programs

From the DOS console, execute the following javac command to compile the
ShoppingCartTest and SearchFacadeTest classes.

Z:\Chapter02-SessionSamples\SessionBeanSamples>%JAVA HOME%/bin/javac -classpath =
%GLASSFISH HOME%Z\1ib\javaee.jar;.\classes\ -d ./classes =
src\com\apress\ejb3\chaptero2\client*.java

Figure 2-10 shows the command being executed from the Z:\Chapter02-SessionSamples\
SessionBeanSamples directory.

WINDOWS" System32cmd.exe

Z:xChapterB2—-SeszionSamplessSessionBeanSamples > JAVA_HOME: sbin~javac —classpath E
#“GLASSFISH_HOME: bhjavaee. jar; .~classes™ —d .- classes srchcomhapresssejh3schap
terB2hclients*. java

Figure 2-10. Compiling the client programs

Alternatively, you can use the following Ant task to compile the client programs:

Z:\Chapter02-SessionSamples\SessionBeanSamples>%ANT_HOME%/bin/ant w»
Compile-ClientPrograms

Running the Client Programs

Once the client programs are compiled, you can invoke the business methods in the
deployed ShoppingCart and SearchFacade session beans using the GlassFish application
client container that supports dependency injection. You will assemble the client and its
dependent classes into a JAR file, which will enable you to specify the JAR file as an argu-
ment to the application client container.

Note The application client container will be covered in detail in Chapter 12.

CHAPTER 2 © EJB 3 SESSION BEANS

Execute the following command in the DOS shell to run SearchFacadeTest:

Z:\Chapter02-SessionSamples\SessionBeanSamples\archive>%GLASSFISH HOME%/bin/w=
appclient.bat -client searchfacadeclient.jar

Figure 2-11 shows the output printed to the console after successful execution of the
client program.

WINDOWS' system32'.cmd.exe

Z:\ChapterBZ—SessionSamples\SessionBeanSamples\aPchiue)ZGLHSSFISH_HOHEz/hin/apch
lient.bat —client searchfacadeclient.jar

SearchFacade Lookup

Searching wines

Printing wines list

Bordeaux

Merlot

Z:xChapterB2-SeszionSamplessSesszionBeanSamplessarchive >

Figure 2-11. The SearchFacadeTest client results

Execute the following command in the DOS shell to run ShoppingCartTest:

Z:\Chapter02-SessionSamples\SessionBeanSamples\archive>%GLASSFISH HOME%/bin/w=»
appclient.bat -client shoppingcartclient.jar

Figure 2-12 shows the output printed to the console after successful execution of the
client program.

WINDOWS' system32' .cmd.exe

Z:xChapterB2-SessionSamplessSessionBeanSamplessarchive >»GLASSFISH_HOME: - bin appcms|
lient.bat —client shoppingcartclient.jar

ShoppingCart Lookup

Adding Wine Item

Printing Cart Items

Zinfandel

Z:xChapterB2-SeszionSampleszsSesszionBeanSamplessarchive >

Figure 2-12. The ShoppingCartTest client results

55

56

CHAPTER 2 = EJB 3 SESSION BEANS

Conclusion

This chapter has covered EJB 3 session bean details using a specific set of examples.
We looked at the new and simplified EJB 3 model for developing session beans using
standard Java language artifacts, such as Java classes and interfaces. We looked at session
beans, and some typical use cases in which session beans can be used for developing
applications. We discussed two different types of session beans (stateless and stateful),
including the differences between them and some general use cases for each. We covered
session bean usage in 2-tier and 3-tier application architectures. We discussed the usage
of dependency injection in stateless and stateful beans. We considered ways to gain
fine-grained control over application flow, including the use of callback methods and
interceptors in stateless and stateful beans, as well as the use of annotations like
@PostContruct and @PreDestroy. We looked at what is required to compile/build, package,
and deploy session beans to the GlassFish application server. Finally, we looked at run-
ning the sample client programs using the GlassFish application client container.

In the next two chapters, we will drill down into the Java Persistence API (JPA) so
that you can learn how to map POJOs to database tables and perform query and CRUD
operations.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Apress Mallooy's general settings for optimal printing.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

